

Laboratory experiments to test the performance of the cement-free bricks utilized in EAF University of Oulu

Dsc.Eng Matti Aula

Dsc.Eng Mamdouh Omran

MSc. Ahmed Abdelrahim

Proff. Timo Fabritius

Background ሮማ

Cement-free bricks offer many advantages over cement bricks in EAF:

- Takes less energy to melt
- No silica input to furnace

Drawbacks:

- Mechanical properties typically worse
- \rightarrow Possible dust problems
- Binder can combust
- Properties vary highly depending on the binder and recipe
- \rightarrow Utilization of cement-free bricks in EAF requires better understanding of their behaviour in EAF than the cement bricks

Background

Why perform laboratory scale tests?

- Many possible recipes and binder systems
- → impossible to find optimal recipe without small-scale tests
- Avoid problems in industrial scale
- Obtain guidelines how to handle the bricks without excessive generation of fine particles

Design of laboratory test plan

 The tests should be designed to simulate the conditions the bricks will be subjected to in EAF

1. Storage and material handling

- Aging properties
- Effect of moisture

2. Charging and handling:

- Mechanical properties in material handling
- Charging to furnace (drop height)

3. Behaviour during heating

- Evolved gases and dust emissions
- Binder system temperature stability
- Softening behaviour
- Solidus and liquidus temperature
- Reduction behaviour (self-reducing bricks)

4. Melting behaviour

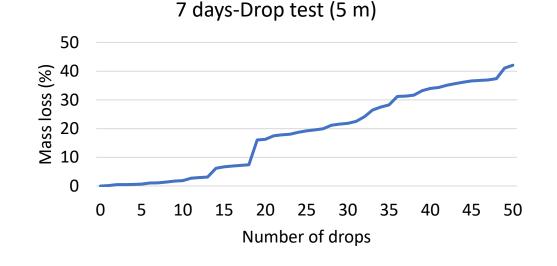
- Dissolution in slag

ሮማ

Storage

- Research question:
- Do the brick properties deteriorate in presence of moisture during aging?
- Aging properties depend highly on the raw materials of the bricks
- Free CaO especially troublesome
- Test methods for aging:
 - Compare mechanical properties of the 1 day and 7 day bricks
 - Storing bricks in humid conditions
 - Sample preparation with wet grinding and cutting (reveals hydrofilic properties)

6/24/2021


Charging and handling

Research question:

- Are the mechanical properties of the bricks good enough to withstand handling and charging to EAF?
- Very high bond strength not necessarily optimal, can require high energy to melt
- Test methods material handling
 - Drop tests (number of drops, height)
 - Tumbler tests
 - (Compressive strength)

Drop tests

- Drop tests are very important for determining handling properties
- Brick dropped consequtively from certain height and the mass loss is measured
- Good screening method, can be used to reduce the amount of brick recipes tested further
- A brick can give very good compressive strength but perform poorly in consecutive drop tests
- Important to perform from heigh relevant to EAF charging or silo storage (for example 5 meters)

Heating behaviour

50°C	1420°C	1450°C	1495°C	1510°C		

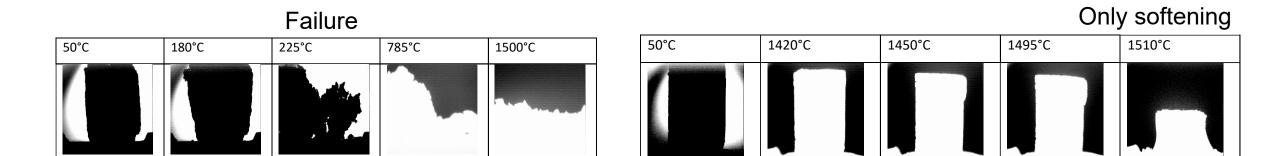
50°C	995°C	1335°C	1370°C	1500°C		

Research questions:

- 1. Does the brick retain it's shape in the heating?
- 2. Are excessive amounts of fines formed?
- 3. How high is the volatilization of the brick?
- 4. Does reduction occur in the brick?

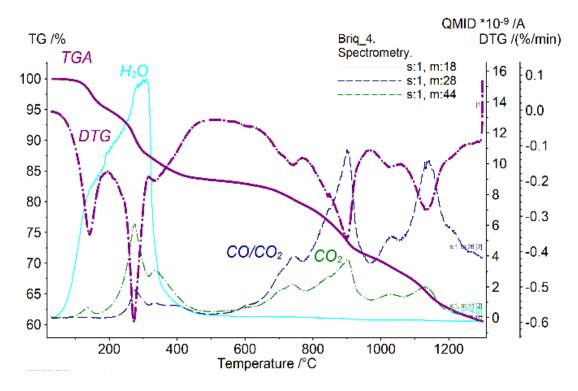
Test methods:

- Dilatometer
- TGA-DTA-MS
- Full scale brick TGA


Dilatometry

			Solidus	Liquidus
50°C	995°C	1335°C	1370°C	1500°C
		\square		

 Measures change of shape during the heating

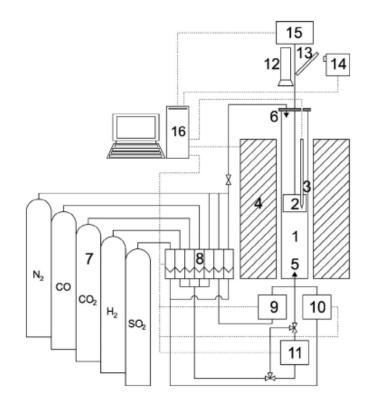

Allows measurement of:

- Softening temperature
- Solidus temperature
- Liquidus temperature

TGA-DTA-MS

Example of TGA-DTA-MS for self-reducing brick

Enables:


- Mass spectrometry measurement of evolved gases
- Measuring change of weight during heating
- Detection of phase change temperatures with DTA

Sample	Reaction 1	Reaction 2	Reaction 3	Reaction 4
1	Binder decomposition at 286 ºC, fast	Reduction at 800 – 1400 ∘C		
2	Binder decomposition 200 – 500 ∘C, slow	CaCO3 decomposition at 600 - 800 °C		
3	Evaporation of free water at 109 - 200 ºC	Slow decomposition of binder at 200 - 400 °C	Slow reduction at 700 – 1100 ∘C	Fast reduction at 1100 – 1250 ∘C
5	Binder decomposition at 222 ºC, fast	Slow water removal at 100 - 500 ºC	Decompostion of manganese ore at 670 °C	Reduction at 1100 – 1500 °C

Example of summary of results

6/24/2021

Full scale TGA

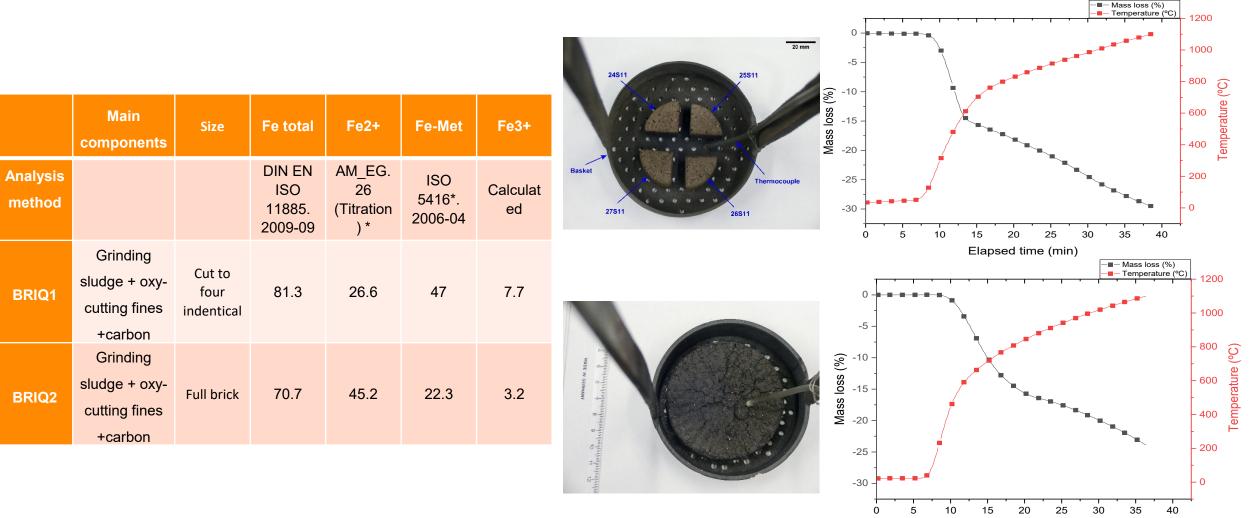
Schematic of the appartus

- Thermo gravimetric analysis for full brick
 Enables:
 - Measurement of reduction degree of selfreducing bricks
 - Determine the effect of brick size on reduction degree
 - Observing thermal shock resistance of the full brick

Features:

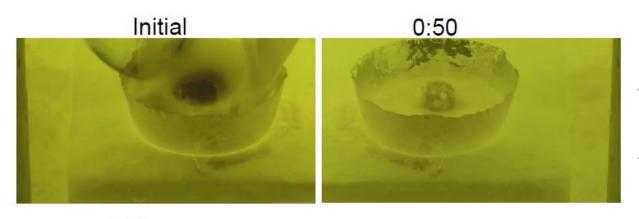
- Heating to 1100 C in 35 min
- Reducing atmoshpere
- Camera to see shrinkage

Gas composition

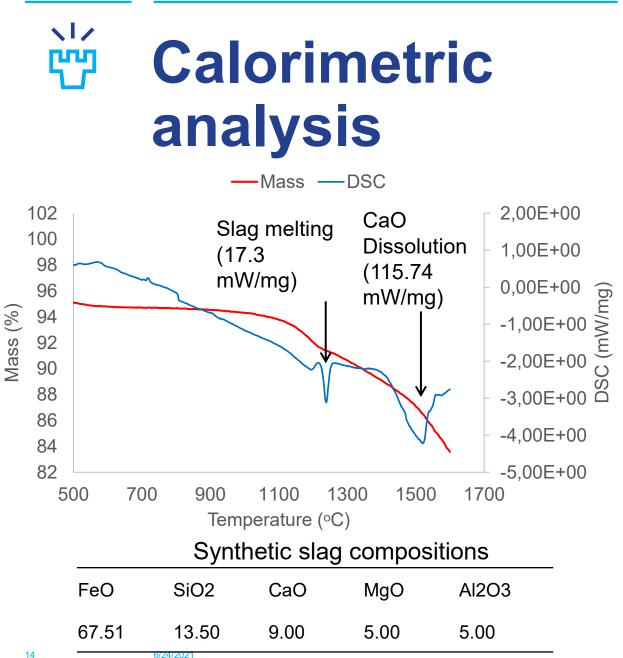

Gas	N ₂	CO	CO ₂	H ₂
(%)	31.00	50.00	15.00	4.00

Full scale TGA

Residual analyzed with metallographic analysis (Montanuniverstität Leoben)


University of Oulu

Elapsed time (min)


6/24/2021

Melting behaviour

- Research question:
 - Do the bricks melt or are the taphole clogging problems possible?
 - Are there fuming problems?
 - How much energy does the brick melting take?
- To accurately test the melting and dissolution behaviour, liquid slag is required
- Laboratory chamber furnaces suitable for such trials
- Features:
 - Synthetic liquid slag in platinum crucible
 - Temperature 1550 C
 - Brick put on the top of the hot slag
 - Melting observed with camera

- Calorimetric analysis enables measurement of energy consumption
- Bricks with organic binders very difficult to analyze with Differential scanning calorimetry (DSC)
- High volatilization, organic compounds and prone to combustion
- → Hazardrous for delicate DSC equipment
- \rightarrow Extreme care required in DSC trials
- → Energy consumption more feasible to analyze with pilot scale EAF

Example of test results

	Main components	Binder	Test	Compression	Drop test	TGA- MS	Melting	Reduction	Dilatometry	Sample prep	Suitability for use in EAF	Remark
BRIQ1	Oxy-cut fines + CCD dust	Starch	BRIQ1	++	+	+	NA	-	++	+	Use limited	High fuming
BRIQ2	CaO fines	Starch	BRIQ2	+	+	+	NA	NA	+	+	Suitable	
BRIQ3	Grinding sludge + oxy-cutting fines	Starch	BRIQ3	++	+	+	NA	+	++	+	Suitable	
BRIQ4	Grinding sludge + oxy-cutting fines	Starch	BRIQ4	++	++	+	NA	++	++	+	Suitable	
BRIQ5	MnO dust	Starch	BRIQ5	+	+	+	NA	+	-	-	unsuitable	
BRIQ6	LF Slag	Starch + NaSiO ₂	BRIQ6	+	+	NA	++	NA	++	-	Use limited	Cannot be stored for long
BRIQ7	Mix residues + LF slag	Starch	BRIQ7	+	+	NA	++	NA	++	-	Use limited	Cannot be stored for long

